DP4™, DP10™, DP11™
GGB Metal-Polymer Plain Bearing
Materials for Dry Operation
All the products described in this brochure are manufactured under DIN EN ISO 9001, ISO/TS 16949 and ISO 14001 approved quality management systems.

All certificates are available for download on our website www.ggbearings.com.
Content

1 Introduction ... 4
2 Structure and Composition 4
 2.1 Material Bearing Layer Composition 5
 2.2 Basic Forms .. 5
3 Properties .. 6
 3.1 Physical and Mechanical Properties 6
4 Bearing Performance 6
 4.1 Continuous Rotation 6
 4.2 Oscillating Movement:
 Low Frequency / High Amplitude 7
 4.3 Oscillating Movement:
 High Frequency / Low Amplitude 7
 4.4 Dry Friction 8
 4.5 Bush Burnishing 8
5 Selection Guide 9
 5.1 Product Performance Comparison 9
 5.2 Calculation of GGB Bearing Performance 9
6 Data Sheet for Bearing Design 10
7 Product Information 11
 Declaration on the RoHS Directive 11
 Health Hazard - Warning 11
 Trademarks ... 11
1 Introduction

This brochure describes the range of self-lubricated PTFE based metal-polymer plain bearings specifically developed by GGB for use in dry applications.

PTFE based metal-polymer plain bearings are used extensively in a diverse range of industrial and automotive applications, where potentially they can:

- offer environmentally friendly dry running operation (as opposed to grease or oil lubricated)
- improve friction and wear performance (relative to conventional bronze, steel and bimetal bearings)
- reduce equipment / operating costs and improve performance (when replacing rolling element bearings)

These GGB plain bearing materials give excellent performance in a wide range of loads, speeds and temperatures; with or without external lubrication.

GGB’s longest serving product, DU®, was developed as a self-lubricated dry bearing more than 50 years ago, when it quickly became established as a worldwide industry standard.

However, due to the lead content in the DU® overlay, GGB has developed a new range of lead free self-lubricated materials capable of meeting the most stringent performance requirements.

Each new material complies with the following European Parliament legislation:

- End of Life vehicles directive 2000/53/EC concerning the elimination of hazardous materials in the construction of passenger vehicles and light trucks (the EVL directive).

Although designed for dry operation, these PTFE based materials can also perform exceptionally well in fluid lubricated conditions. For example, both DP4™ and DP10™ are particularly suited to marginally lubricated conditions, and DP4™ performs well in oil lubricated heavy duty hydraulic applications.

2 Structure and Composition

GGB’s PTFE based metal-polymer materials are composed of three bonded layers: a steel backing and a porous bronze interlayer, impregnated and overlaid with a bearing surface consisting of PTFE (polytetrafluoroethylene) and fillers.

The steel backing provides mechanical strength while the bronze sinter layer provides a strong mechanical bond for the filled PTFE bearing lining.

The PTFE-based bearing surface exhibits very low friction properties, and the different filler packages (indicated below) give each product its unique set of physical characteristics, for example, superior wear resistance.

DP4™ can also be supplied with a bronze backing, (referred to as DP4B™) when improved corrosion resistance or anti-magnetic properties are required.
2.1 Material Bearing Layer Compositions

<table>
<thead>
<tr>
<th>Material Bearing Lining Composition</th>
<th>DP4™</th>
<th>DP10™</th>
<th>DP11™</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE + Fillers</td>
<td>PTFE + Solid lubricant</td>
<td>PTFE + Solid lubricant + Fillers</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Basic Forms

Standard Components

Standard products are manufactured according to international, national and internal standards. Standard products are produced in the following forms:

- Cylindrical and flanged wrapped bushes
- Thrust and flanged washers
- Strip material

Availability

- **DP4™**
 - Cylindrical, flanged bushes, thrust and flanged washers and strip
 - ex stock
- **DP4B™**
 - Cylindrical, flanged bushes and strip
 - Thrust and flanged washers
 - ex stock
 - made to order
- **DP10™**
 - All forms
 - made to order
- **DP11™**
 - All forms
 - made to order

Non-Standard Components

Non-Standard products are manufactured to requirements and may for example include the following forms:

- Modified standard parts (notches, oil grooves, etc.)
- Stampings and deep drawn parts
- Special shapes
3.1 Physical and Mechanical Properties

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>Units</th>
<th>DP4™</th>
<th>DP4B™</th>
<th>DP10™</th>
<th>DP11™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of thermal expansion:</td>
<td>1/10¹ K</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>- parallel to surface</td>
<td>30</td>
<td>36</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>- normal to surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum operating temperature T_max</td>
<td>°C</td>
<td>+280</td>
<td>+280</td>
<td>+280</td>
<td>+280</td>
</tr>
<tr>
<td>Minimum operating temperature T_min</td>
<td>°C</td>
<td>-200</td>
<td>-200</td>
<td>-200</td>
<td>-200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive yield strength</td>
</tr>
<tr>
<td>Maximum load P - static / dynamic</td>
</tr>
<tr>
<td>Maximum sliding speed v</td>
</tr>
<tr>
<td>Maximum (\bar{P}v) factor</td>
</tr>
<tr>
<td>Recommended mating surface hardness</td>
</tr>
<tr>
<td>Recommended mating surface finish (R_a)</td>
</tr>
</tbody>
</table>

4 Bearing Performance

Each application, depending on the equipment design, usage and operating conditions (load, speed, type of movement, temperature, etc.), places individual demands on the bearing.

GGB undertook an extensive test program in order to determine each material’s dry wear performance, while operating with different types of movement.

The three different types of movement are:
- Continuous rotation
- Low frequency oscillation
- High frequency oscillation

Additionally, friction values for each material were measured under low and high speed dry running conditions. Finally, the material's resistance to bore burnishing (bore calibration) was also validated.

4.1 Continuous Rotation

Under continuous rotation according to the GGB test conditions, the relative dry wear performance of each material is as follows:

Test Conditions: Specific load = 25 MPa Rotation speed = 0.04 m/s Life test

Typical applications include: Pulleys, sheaves, sprockets, wheels, axles, gears & gear shafts, crank shafts, office equipment, bank note handling machinery, packaging machinery, special purpose machinery, cranes & hoists, agricultural machinery, etc.
4.2 Oscillating Movement
Low Frequency / High Amplitude

Under low frequency and high amplitude oscillating movement, according to the GGB test conditions, the relative dry wear performance of each material is as follows:

![Bar graph showing relative wear resistance for DP4, DP10, and DP11 under low frequency and high amplitude test conditions.]

Test Conditions:
Specific load = 5 MPa Frequency = 1 Hz Angle = ±60° 40 Hours operation

Typical applications include:
Door, boot and bonnet hinges, furniture hinges, seat height adjuster mechanisms, linkages, cabriolet roof top pivot points, windscreen wipers, switchgear, solenoids, brakes, etc.

4.3 Oscillating Movement
High Frequency / Low Amplitude

Under high frequency and low amplitude oscillating movement according to the GGB test conditions, the relative dry wear performance of each material is as follows:

![Bar graph showing relative wear resistance for DP4, DP10, and DP11 under high frequency and low amplitude test conditions.]

Test Conditions:
Specific load = 5 MPa Frequency = 30 Hz Angle = ±3° Life test

Typical applications include:
Pulley dampers, belt tensioners, chain tensioners, twin mass flywheels, clutches, solenoids, textile machines, etc.
4.4 Dry Friction

A low level of friction is generally desirable in most dry bearing applications. An indication of dynamic friction coefficient under low and high speed dry conditions is critical to an application. Note that actual friction values in the final application will depend upon many design and operating factors. Consequently, if frictional characteristics are critical to an application, the actual values should be determined by testing.

![Graph showing dry friction under low and high speed conditions](image)

Dry friction under low speed conditions:
Speed: 0.05 m/s

Dry friction under high speed conditions:
Speed: 0.35 m/s

4.5 Bush Burnishing

Burnishing the bore of an assembled bush (calibration) reduces the variation of the inner diameter of the bush, which leads to a reduction in the clearance variation between the bush and the shaft (less play, lower noise, etc). The recommended burnishing tool design is shown in the illustration opposite. GGB trials demonstrated that all three materials exhibited no removal of the bearing layer for diometric burnish interferences up to 0.150 mm. However the impact of burnishing on the bearing and on the assembly should be validated by trials.
5.1 Product Performance Comparison

Product selection may be simplified by using the following table which compares the relative strengths of each material. For specific applications where bearing performance is of major importance, or where environmental or unusual operating conditions are present, prototype testing or test rig simulations are recommended, to confirm satisfactory bearing design and performance.

<table>
<thead>
<tr>
<th>Material</th>
<th>Continuous rotation</th>
<th>Low frequency oscillation</th>
<th>High frequency oscillation</th>
<th>Dry friction</th>
<th>Burnishability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP4™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP10™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP11™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ranking:
- Recommended
- Good
- Fair

5.2 Calculation of GGB Bearing Performance

For many years, GGB has carried out extensive plain bearing material testing on a variety of test rigs running under a range of different, but controlled operating conditions. Using the data from these tests, in addition to the various graphs and guides shown above and published for its other materials, GGB has been able to develop advanced programs that enable GGB engineers to undertake more detailed predictions of bearing performance and bearing material selection according to the unique operating conditions of each specific application.

This service is available by completing the enclosed Data Sheet for Bearing Design and by contacting your local GGB representative.
Data Sheet for Bearing Design

Company:

Project:

Application:

Date:

Existing Design
New Design

Quantity:

Annual

Contact name:

Tel.:

Fax:

Email:

Drawing attached

Dimensions in mm

<table>
<thead>
<tr>
<th>Inside diameter</th>
<th>Outside diameter</th>
<th>Length</th>
<th>Flange diameter</th>
<th>Flange thickness</th>
<th>Wall thickness</th>
<th>Length of slideplate</th>
<th>Width of slideplate</th>
<th>Thickness of slideplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_i)</td>
<td>(D_o)</td>
<td>(B)</td>
<td>(D_e)</td>
<td>(S_e)</td>
<td>(S_T)</td>
<td>(L)</td>
<td>(W)</td>
<td>(S_S)</td>
</tr>
</tbody>
</table>

Load

- Radial load \(F_{[N]}\)
- Axial load \(F_{[N]}\)

Movement

- Rotational speed \(N_{[1/min]}\)
- Speed \(v_{[ms]}\)
- Length of stroke \(L_S_{[mm]}\)
- Frequency of stroke \(f_{[1/min]}\)
- Oscillating angle \(\psi_{[^\circ]}\)
- Oscillating freq. \(N_{OSZ_{[1/min]}}\)

Service hours per day

- Continuous operation [h]
- Intermittent operation [h]

Fits and tolerances

- Housing (Ø, tolerance) \(D_H\)
- Shaft (Ø, tolerance) \(D_J\)

Mating surface

- Material
- Hardness \(HB/HRC\)
- Surface finish \(R_a_{[\mu m]}\)

Operating environment

- Temperature - ambient \(T_{\text{amb}}\)
- Temperature - min/max \(T_{\text{min}}/T_{\max}\)

Housing material

- Assembly with good heat transfer properties
- Assembly with poor heat transfer properties

Dry operation

- With lubricant

If grease, type with technical datasheet

- Oil splash
- Oil circulation

If oil, type with technical datasheet

- Oil bath

Service life

- Required service life \(L_{\text{H}_{[h]}}\)

10
Product Information

GGB gives an assurance that the products described in this document have no manufacturing errors or material deficiencies. The details set out in this document are registered to assist in assessing the material's suitability for the intended use. They have been developed from our own investigations as well as from generally accessible publications. They do not represent any assurance for the properties themselves.

Unless expressly declared in writing, GGB gives no warranty that the products described are suited to any particular purpose or specific operating circumstances. GGB accepts no liability for any losses, damages or costs however they may arise through direct or indirect use of these products.

GGB’s sales and delivery terms and conditions, included as an integral part of quotations, stock and price lists, apply absolutely to all business conducted by GGB. Copies can be made available on request.

Products are subject to continual development. GGB retains the right to make specification amendments or improvements to the technical data without prior announcement.

Edition 2010 (This edition replaces earlier editions which hereby lose their validity).

Declaration on lead contents of GGB products/compliance with EU law

Since July 1, 2006 it has been prohibited under Directive 2002/95/EC (restriction of the use of certain hazardous substances in electrical and electronic equipment; ROHS Directive) to put products on the market that contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE). Certain applications listed in the annex to the ROHS Directive are exempted.

A maximum concentration value of 0.01% by weight and per homogeneous material, for cadmium and of 0.1% by weight and per homogeneous material, for lead, mercury, hexavalent chromium, PBB and PBDE shall be tolerated.

According to Directive 2000/53/EC on end-of-life vehicles, since July 1, 2003 it has been prohibited to put on the market materials and components that contain lead, mercury, cadmium or hexavalent chromium. Due to an exceptional provision, lead-containing bearing shells and bushes could still be put on the market up until July 1, 2008. This general exception expired on July 1, 2008. A maximum concentration value of up to 0.1% by weight and per homogeneous material, for lead, hexavalent chromium and mercury shall be tolerated.

All products of GGB in this brochure, with the exception of DU, DUB, DB, SY and SP, satisfy these requirements of Directives 2002/95/EC (ROHS Directive) and 2000/53/EC (End-of-life Vehicle Directive).

All products manufactured by GGB are also compliant with REACH Regulation (EC) No. 1 907/2006 of December 18, 2006.

Health Hazard - Warning

Fabrication

At temperatures up to 250 °C the polytetrafluoroethylene (PTFE) present in the lining material is completely inert so that even on the rare occasions in which DP4™, DP4B™, DP10™ or DP11™ bushes are drilled or sized after assembly there is no danger in boring or burnishing.

At higher temperatures however, small quantities of toxic fumes can be produced and the direct inhalation of these can cause an influenza type of illness which may not appear for some hours but which subsides without after-effects in 24-48 hours.

Such fumes can arise from PTFE particles picked up on the end of a cigarette. Therefore smoking should be prohibited where DP4™, DP4B™, DP10™ or DP11™ are being machined.

DU®, DU®B, DP4™, DP4B™, DP10™ and DP11™ are trademarks of GGB